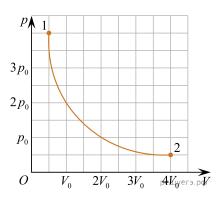

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Прибор, предназначенный для измерения объема тела, это:
- 1) секундомер 2) вольтметр 3) амперметр 4) мензурка 5) психрометр
- **2.** Материальная точка совершила перемещение $\Delta \vec{r}$ в плоскости рисунка (см. рис.). Для проекций этого перемещения на оси Ox и Oy справедливы соотношения, указанные под номером:


1)
$$\Delta r_x > 0, \Delta r_y < 0$$
 2) $\Delta r_x > 0, \Delta r_y > 0$ 3) $\Delta r_x = 0, \Delta r_y > 0$ 4) $\Delta r_x < 0, \Delta r_y = 0$ 5) $\Delta r_x < 0, \Delta r_y < 0$

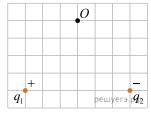
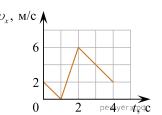
- **3.** Подъемный кран движется равномерно в горизонтальном направлении со скоростью, модуль которой относительно поверхности Земли $\upsilon=30$ см/с, и одновременно поднимает вертикально груз со скоростью, модуль которой относительно стрелы крана u=40 см/с. Модуль перемещения Δr груза относительно поверхности Земли за промежуток времени $\Delta t=1,4$ мин равен:
 - 1) 53 M 2) 50 M 3) 42 M 4) 28 M 5) 24 M
- **4.** На материальную точку массой m=0,50 кг действуют две силы, модули которых $F_1=4,0$ Н и $F_2=3,0$ Н, направленные под углом $\alpha=90^\circ$ друг к другу. Модуль ускорения a этой точки равен:
 - 1) 2.0 m/c^2 2) 5.0 m/c^2 3) 8.5 m/c^2 4) 10 m/c^2 5) 14 m/c^2
- **5.** Мяч свободно падает с высоты H=9 м без начальной скорости. Если нулевой уровень потенциальной энергии выбран на поверхности Земли, то отношение потенциальной энергии Π мяча к его кинетической энергии K на высоте h=4 м равно:

1)
$$\frac{2}{3}$$
 2) $\frac{3}{5}$ 3) $\frac{4}{5}$ 4) $\frac{4}{7}$ 5) $\frac{5}{4}$

- **6.** В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/cm}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/cm}^3$) высотой H = 49 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 28,0 mm 2) 32,1 mm 3) 34,9 mm 4) 36,0 mm 5) 38,7 mm
- 7. Газ, начальная температура которого $T_1 = 300$ °C, нагрели на $\Delta t = 300$ К. Конечная температура T_2 газа равна:
 - 1) 54 K 2) 327 K 3) 600 K 4) 873 K 5) 1146 K
- **8.** В некотором процессе зависимость давления p идеального газа от его объема V имеет вид $p=\frac{A}{V},$ где A коэффициент пропорциональности. Если количество вещества постоянно, то процесс является:

- 1) адиабатным 2) изотермическим 3) изохорным 4) изобарным 5) произвольным
- 9. На рисунке показан график зависимости давления p одноатомного идеального газа от его объёма V. При переходе из состояния 1 в состояние 2 газ совершил работу, равную A=7 кДж. Количество теплоты Q, полученное газом при этом переходе, равно:

- 1) 9 кДж
- 2) 7 кДж
- 3) 5 кДж
- 4) 4 кДж
- 5) 1 кДж
- **10.** Точечные заряды, модули которых $|q_I| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:

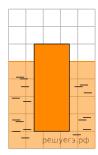
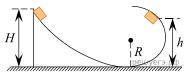
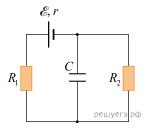

Рис.1

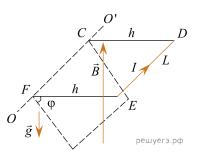
Рис.2


- 1) 1 2) 2
- 3)3
- 4) 4 5) 5
- 11. Материальная точка массой m=2,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t=3 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.

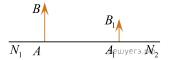
- **12.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 5.0 м, B = 2.0 м/с , C = 2.0 м/с². Если масса тела m = 2.0 кг, то в момент времен t = 2.0 с мгновенная мощность P силы равна ... **В**т.
- 13. Цилиндр плавает в бензине $ho_6=800~{{\rm K\Gamma}\over{\rm M}^3}$ в вертикальном положении (см. рис.). Если масса цилиндра $m=16~{\rm Kr}$, то объем V цилиндра равен ... д ${\rm M}^3$.



14. С высоты H=80 см из состояния покоя маленький брусок начинает соскальзывать по гладкой поверхности, плавно переходящей в полуцилиндр радиусом R=50 см (см. рис.). Если траектория движения бруска лежит в верти-


кальной плоскости, то высота h, на которой брусок оторвётся от внутренней поверхности полуцилиндра, равна ... см.

- **15.** По трубе, площадь поперечного сечения которой $S=5,0~{\rm cm}^2$, со средней скоростью $\langle \upsilon \rangle = 8,0~{\rm m/c}$ перекачивают идеальный газ ($M=58\cdot 10^{-3}~{\rm кг/моль}$), находящийся под давлением $p=390~{\rm k\Pi a}$ при температуре $T=284~{\rm K}$. За промежуток времени $\Delta t=10~{\rm muh}$ через поперечное сечение трубы проходит масса газа, равная ... **кг**.
- 16. Гружёные сани массой M=264 кг равномерно движутся по горизонтальной поверхности, покрытой снегом, температура которого t=0.0 °C. Коэффициент трения между полозьями саней и поверхностью снега $\mu=0.035$. Если всё количество теплоты, выделившееся при трении полозьев о снег, идёт на плавление снега ($\lambda=330$ кДж/кг), то на пути s=400 м под полозьями саней растает снег, масса m которого равна ... г.
- 17. Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения $S=120~{\rm cm}^2,$ находится в воздухе, давление которого $p_0=100~{\rm k\Pi a}.$ Когда газу медленно сообщили некоторое количество теплоты, его внутренняя энергия увеличилась на $\Delta U=450~{\rm Дж},$ а поршень сместился на расстояние l, равное ... мм.
- **18.** Источник радиоактивного излучения содержит $m_0=1,2$ г изотопа радия $^{226}_{88}\mathrm{Ra}$, период полураспада которого $T_{1/2}=1,6$ тыс. лет. Через промежуток времени $\Delta t=6,4$ тыс. лет масса m нераспавшегося изотопа радия составит ... мг.
- 19. Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=60$ В и с внутренним сопротивлением r=3,0 Ом, двух резисторов и конденсатора ёмкостью C=0,50 мкФ (см. рис.). Если сопротивления резисторов $R_1=R_2=6,0$ Ом, то заряд q конденсатора равен ... R_1 мкКл.

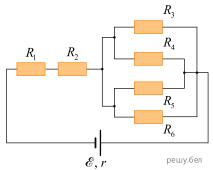

- **20.** Троллейбус массой m=11 т движется по горизонтальному участку дороги прямолинейно и равномерно со скоростью, модуль которой $\upsilon=36~\frac{{\rm KM}}{{\rm q}}$. Отношение модулей силы сопротивления движению и силы тяжести, действующих на троллейбус, $\frac{F}{mg}=0.011$. Если напряжение на двигателе троллейбуса $U=550~{\rm B}$, а коэффициент полезного действия двигателя $\eta=81$ %, то сила тока I в двигателе равна ... A.
- **21.** Протон, начальная скорость которого $\upsilon_0=0$ м/с, ускоряется разностью потенциалов $\varphi_1-\varphi_2=0,45$ кВ и влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции. Если модуль вектора магнитной индукции магнитного поля B=0,30 Тл, то радиус R окружности, по которой протон будет двигаться в магнитном поле, равен ... мм. (Ответ округлите до целого числа мм.)

22. Две лёгкие спицы одинаковой длины h и стержень массой m=5,0 г и длиной L=20 см образуют П-образный (прямоугольный) проводник CDEF, который может свободно вращаться вокруг горизонтальной оси OO'. Проводник помещён в однородное магнитное поле, линии индукции которого направлены вертикально вверх (см. рис.). В проводнике протекает постоянный ток I=12 А. Проводник отклонили так, что его плоскость стала горизонтальной, а затем

отпустили без начальной скорости. Если мгновенная скорость стержня стала равной нулю в тот момент, когда угол между плоскостью проводника $\phi = 60^\circ$, то модуль индукции магнитного поля равен ... мТл.

23. Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии $D=12\,\mathrm{m}$ от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной $l=3,1\,\mathrm{m}$, движущегося на расстоянии $d=2,6\,\mathrm{m}$ от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=2,0\,\mathrm{c}$. Если кабина и противовес движутся в противоположных направлениях с одинаковы-



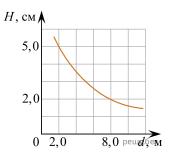
ми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите в сантиметрах в секунду.

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\rm A}{\rm c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om.}$$


В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

